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Three cases, including a two-dimensional, an axisymmetric, and a three-dimen-
sional flowfield, were studied to demonstrate the effectiveness and reliability of a
method proposed for validation of numerical solutions of complex flowfields. Im-
ages of these flowfields were first constructed from numerical solutions based on the
principle of experimental flow visualization, and then compared directly with experi-
mental interferograms. Because both experimental and numerical results are of iden-
tical physical representation, agreement between them can be evaluated effectively
by examining characteristic flow structures of the flowfields as well as comparing dif-
ferences in density. An efficient algorithm for three-dimensional density integration
was also proposed to replace the conventional one that is computationally expen-
sive. The study shows that reliable validation can be achieved in this way because it
allows a direct comparison between numerical and experiment results without any
loss of accuracy in either of them. The validation method is highly recommended
for three-dimensional flowfields where quantification of images from experimental
flow visualization is very difficult or impossible. c© 1999 Academic Press

Key Words:CFD validation; numerical visualization; holographic interferogram;
three-dimensional density integration.

1. INTRODUCTION

The recent progress in the computational fluid dynamics has made it possible to simulate
various complex three-dimensional flowfields including many shock waves. This progress
strengthens our ability to highlight physics in flowfields that are difficult to clearly visualize
experimentally. However, it becomes increasingly important to validate these numerical
solutions before relying on them to explain the physics of the flowfields. This is neces-
sary because the modeling of physical phenomena often induces some simplifications in
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both governing equations and boundary conditions. Furthermore, to a certain extent, the
numerical algorithms are only approximations of these governing equations. Therefore, the
resulting numerical solutions may or may not represent the real flowfield being considered.
In addition, good agreement between numerical and experimental results is necessary to
confirm the phenomena observed from experiments, especially in the visualization of three-
dimensional flowfields. For example, the widely used holographic interferometry produces
only integral views of three-dimensional flowfields by recording the light phase shift due
to density variations [19]. Hence the phenomena observed from such images are not very
easily interpreted.

The validation of numerical solutions has been carried out for decades and usually was
done by comparing them with exact solutions or experimental measurements at some mea-
surement stations in flowfields. However, in recent research work, most of the flowfields
under study are highly transient, such as shock wave reflection, diffraction, and interaction,
for which there are no exact solutions. Moreover, characteristic flow structures of interest
may occupy the whole flowfield. It is therefore usually not sufficient to compare numerical
solutions with a limited set of point measurements from experiments. Only through a com-
parison with the data from the whole flowfield measured by non-intrusive techniques can
confidence in numerical solutions be established. From this point of view the validation has
two aspects: one is a check on numerical values and the other is a check on characteristic
flow structures. Such a validation is still a challenging problem in the Computational Fluid
Dynamics (CFD) of complex flowfields.

There are several ways in which experimental flow visualization has been applied to
the validation of numerical solutions. The most widely used method for two-dimensional
flows displays numerical results in the form of isopycnics which can be compared with
experimental infinite-fringe interferograms (for example, Sasohet al. [12], Inoueet al. [4],
Sun and Takayama [13], and Takayama and Jiang [15]). The comparison in this way is
quite informative since the interferometric fringes in the case of two-dimensional flows
give an indication of density contours. However, the evaluation of accuracy is not easy to
make because the corresponding position of numerical isopycnics within fringes is difficult
to locate accurately. Furthermore, in the case of axisymmetric or three-dimensional flows,
the evaluation becomes even more difficult because the fringes no longer correspond to
contours of density, which is averaged along the light path. Using numerical results as
initial values on boundaries to count fringes, Sun and Takayama [13] reported a quantitative
image analysis of infinite-fringe interferograms to validate their numerical solutions. Useful
comparison can be made with this technique but the accuracy varies with the method
used to locate isopycnics within fringes. Finite-fringe interferograms can also be analyzed
with image processing techniques, as reported by Havener and Obergefell [3] and Jiang
et al. [5]. More data are readily available using their methods but the loss of accuracy in
experimental data cannot be avoided. This is because each fringe is broadened to a certain
width and the data are available only at the fringes. So, these methods must use a linear
interpolation between fringes to obtain more data, which leads to errors in highly non-linear
flowfields. Fourier transform fringe analysis supplies more information with high accuracy
but is limited when the hetrodyning frequency of the finite-fringe interferograms is low, as
discussed by Babinsky and Takayama [2]. However, all of the above-mentioned methods
are of limited use for three-dimensional unsteady flows. A tomographic reconstruction
method can be used to obtain density information but it is experimentally intensive because
one projection is insufficient to determine density distribution and several tens of density
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projections from different viewing directions must be provided simultaneously (Taketaet al.
[16]; Parker [9], and Mortonet al. [10]). Considering the above discussion, the strategy of
creating numerical interferograms for direct comparison with experiments was discussed for
CFD validation by many authors (Havener and Obergefell [3], Tamura and Fujii [18], Tam
et al.[17], Yates [20], Babinskyet al.[1], and Jianget al.[7, 8]). From the number of fringes
and their distributions, the accuracy of numerical values and agreement on characteristic
flow structures appearing in the results can be estimated.

In the present study, three cases of two-dimensional, axisymmetric, and three-dimensional
flowfields were investigated to explore further ways to CFD validation through a direct com-
parison between numerical and experimental results. Various aspects of this validation and
the techniques used in the image processing are discussed in detail, especially for the latter
two cases. The algorithm for integrating density in axisymmetric flowfields was described
by Havener and Obergefell [3] and three-dimensional density integration was performed
by Yates [20]. In this paper, an efficient algorithm for integrating three-dimensional den-
sity distributions was developed to replace the one previously used by Yates [20]. The
new algorithm is much faster and will make the three-dimensional post-processing more
widely applicable. The study shows that creating a direct comparison is a promising way
to approach reliable CFD validation, especially for three-dimensional flowfields where
density-integrated effects make experimental images very difficult to interpret.

2. PRINCIPLE OF OPTICAL FLOW VISUALIZATION

Interferometry, schlieren, and shadowgraph are three techniques widely used in optical
flow visualization. These optical techniques use the principle that as light passes through
a flowfield its phase and direction are changed due to variations of the refractive index
induced by non-uniform density in the flowfield. This makes it possible to analyze physical
phenomena that manifest themselves as density changes in the flowfields. Discussions on
the above techniques appear in numerous text books and in the literature. A brief summary
is given here for completeness.

In the case of ideal and non-reacting gases, the refractive indexn is related to the density
ρ by the Gladstone–Dale equation.

n(x, y, z) = 1+ Kgρ(x, y, z), (1)

whereKg is the Gladstone–Dale constant that changes depending upon gas species and
varies slightly with the light wavelength. In holographic interferometry, double exposure
interferograms are generated by exposing the film to the object and the reference beam.
For infinite-fringe interferometry, the object beam passes through the flowfield, and its
phase changes due to variations of the refractive index caused by density changes between
exposures but the reference beam does not change. The phase shift of the object beam
relative to the reference beam between exposures is calculated by integrating

1φ(xim, yim) = 2π

λ
Kg

∫ L0

0
(ρ(x, y, z)− ρ0) dl, (2)

whereλ is the wavelength of the light,ρ0 the density of the undisturbed flow, andL0 the
length of the light path through the test section. The image intensity of the infinite-fringe
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interferogramsI can be calculated by

I = 1+ cos(1φ(xim, yim)+ φ0), (3)

where(xim, yim) denotes the image plane andφ0 is an initial phase shift to compensate for
any phase shift between two exposures and is taken as zero in most of the cases. The fringe
shift N is given by

N = 1

2π
1φ(xim, yim). (4)

This corresponds to the fringe number in infinite-fringe interferograms. Integrating density
along the actual light path as the light deflects through the flowfield in the test section should
be carried out by using Eq. (2), but the procedure is computationally expensive. The straight
line approximation is accepted in the present work [20], which was proven to be a good
approximation when the test section is not too big and the density change is not too large.

In the case of finite-fringe interferograms achieved by tilting the reference beam between
exposures, the image intensity is given by

I = 1+ cos(1φ(xim, yim)+ 2πvxxim + 2πvyyim), (5)

wherevx andvy are the special frequency components of the unperturbed fringes.
The schlieren method is also a very popular flow visualization technique. The intensity

of each point in schlieren photographs is proportional to the density gradient perpendicular
to the knife edge because the ray deflection is proportional to the density gradient. When
the knife is set to be perpendicular to thex-axis in the physical space the intensityI is
proportional to the integration of the density gradient along the ray.

I ∝
∫ L0

0

∂ρ(x, y, z)

∂x
dl. (6)

Shadowgrams are also widely used in aerodynamic experiments. For these, the image
intensity is proportional to the gradient of the integration of gradρ(x, y, z) in the direction
perpendicular to the light ray, which can be calculated by

I ∝ grad
∫ L0

0
gradρ(x, y, z) dl. (7)

Since both the schlieren and shadowgraph methods can provide only qualitative information,
these methods are not used as frequently as interferometry in applications to the CFD
validation.

3. SHOCK WAVE REFLECTION OVER A WEDGE: A TWO-DIMENSIONAL CASE

We now consider the two-dimensional case of shock wave reflection over a wedge. The
optical setup is schematically shown in Fig. 1. In this setup, the light beam is split into two
and collimated with two collimating mirrors: one of these beams is chosen as the reference
beam and the other as the object beam. The reference beam and the object beam are then
superimposed on a holo-film by means of two reflecting mirrors.
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FIG. 1. Schematic for constructing two-dimensional interferograms.

In a two-dimensional case, density distributions on planes perpendicular to the light ray
within a test section are identical so that the equation of (2) is simply reduced to

1φ(xim, yim) = 2π

λ
KgL0(ρ(xim, yim)− ρ0), (8)

where the image plane is parallel to the computational plane andL0 is the width of the test
section.

This test case is a shock wave reflection over a 46◦ wedge forMi = 2.0 and is numerically
simulated by solving the Euler equations with a dispersion-controlled scheme proposed by
Jianget al. [6]. The numerically determined density is processed to produce a synthetic
interferogram by using Eq. (8) and the resulting image is shown in Fig. 2. The experimental
interferogram obtained by using holographic interferometry is shown in Fig. 3. A schlieren
photograph computed by using Eq. (6) and isopycnics plotted with the same density data
are shown in Figs. 4 and 5, respectively.

By comparing Figs. 2 with 3 it can be observed that the number of fringes in these two
photographs is the same, the length of the Mach stem is identical, and fringe distributions
coincide with each other. Therefore, good agreement between them can be concluded.
Minor discrepancies exist near the wedge tip and the contact surface from the triple point.
These discrepancies can be recognized to be due to the wedge difference between the
CFD simulation and the experiment, and the effect of viscosity. From this comparison,
agreement or disagreement on shock wave structures can be recognized readily and the factor
contributing to disagreement can be easily deduced. Such a comparison is very important
for shock wave research since shock wave structures are specially emphasized in this way. In
addition, the validation shows that the equations solved in this case are correct for the study
of shock-wave reflection but not so for the investigation into shear layer development.
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FIG. 2. Experimental interferogram of shock wave reflection over a 46◦ wedge forMi = 2.0.

Quantitative validation is also available in this case by quantifying the experimental
interferogram. Since the actual level of density shift between fringes is known, counting the
number of fringes between the location of known density and the point of interest provides
quantitative density information [13]. However, the positions of specific isopycnics such
as those in Fig. 4 are not easily determined from the experimental interferogram as shown
in Fig. 2. It is usually assumed that the middle line of each fringe is the position of the
corresponding isopycnics. Unfortunately, this will introduce errors because the flowfields

FIG. 3. Numerical interferogram of shock wave reflection over a 46◦ wedge forMi = 2.0.
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FIG. 4. Isopycnics of shock wave reflection over a 46◦ wedge forMi = 2.0.

are highly non-linear in most of the cases of interest. One of the advanced techniques is
Fourier transform fringe analysis. This is applied to finite-fringe interferograms to obtain
actual density of flowfield with error levels among fractions of the density difference between
two fringes [16]. However, if the density jump across a shock wave is larger than the density
difference between two fringes, the relevant area of the flowfield is very difficult to quantify.
In that case, a phase-unwrapping algorithm is required to determine the correct fringe shift.
However, such an algorithm will not work if the shock waves are everywhere strong [21],

FIG. 5. Numerical schlieren of shock wave reflection over a 46◦ wedge forMi = 2.0.
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since it requires a starting point where the magnitude of the fringe shift is less than one. In
conclusion, these quantifying methods are very useful in practice but will result in a loss
of accuracy to a certain extent or will be limited to some special cases. It seems that the
comparison done above makes the best use of the experimental data.

Figure 5 shows a schlieren photograph of the shock wave reflection. Features related
to sharp discontinuities in density, such as shock waves, the Mach stem, and the contact
surface, are easily visualized against the background but continuous density distributions are
poorly visualized. Shadowgrams also show similar characters of the flowfield. Therefore,
for quantitative validation of numerical solutions the interferogram is preferable.

4. SHOCK WAVE PROPAGATION IN A TUBE WITH SUDDEN AREA CHANGE:

AN AXISYMMETRICAL CASE

In the case of axisymmetric flows the principle for constructing interferograms under
the assumption of the straight line approximation is schematically shown in Fig. 6. Here
the reference beam and the object beam are still superimposed on the holo-film but the
density distribution on the planes perpendicular to the light ray within the test section varies
along the light path. Considering this difference and the symmetry of the physical domain,
the phase shift expressed by Eq. (2) can be calculated by Eq. (9) when the light path is
perpendicular to the axis of symmetry,

1φ(xim, yim) = 4π

λ
Kg

∫ R

yim

(ρ(x, r )− ρ0) dr, (9)

where R is the diameter of the physical domain and the integration is performed from
r = yim to r = R along the light path. This integration is not as straightforward as that in

FIG. 6. Schematic for constructing axisymmetrical interferograms.
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FIG. 7. Numerical (the upper half) and experimental (the lower half) interferogram at an early stage of shock
wave propagation forMi = 1.3.

two-dimensional cases but is still quite simple to calculate. A more detailed description
of the density integration was given by Havener and Obergefell [3]. For this second test
case, shock wave propagation in a tube with a sudden area change in its cross section (a
large-diameter chamber is connected to a small-diameter shock tube) is simulated by using
the same numerical code as that used for the first case. The Mach number is taken to be
Mi = 1.3 and the ratio of the diameter of the large chamber to the diameter of the shock
tube is taken as 2 : 1. This large chamber is specially designed to have an aspheric cross
section which allows the collimated incident ray to traverse the transparent wall of the test
section parallel, and to emerge parallel. A detailed description of the experiment was given
by Takayama and Onodera [14] and Jianget al. [7]. A combination of experimental and
numerical interferograms of the flowfield at an early stage is shown in Fig. 7 and that at a
later stage is shown in Fig. 8. Isopycnics of numerical solutions in the symmetric plane at
the later stage are shown in Fig. 9.

As is expected, the difference between the interferogram shown in Fig. 8 and the numerical
isopycnics shown in Fig. 9 is obvious because of the axisymmetric density distribution. The

FIG. 8. Numerical (the upper half) and experimental (the lower half) interferogram at a later stage of shock
wave propagation forMi = 1.3.
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FIG. 9. Numerical isopycnics at a later stage of shock wave propagation forMi = 1.3.

transmitting shock wave, the primary vortex ring, and the shear layer appear in different
ways in these two kinds of displays. Furthermore, the shock wave reflection from the tube
wall is clearly visible in the isopycnics, but is smeared in the interferogram due to the
effects of the integral view. Hence the physical understanding of the wave phenomena is
less easy to reach and conclusions about the CFD validation are difficult to draw. However,
if the validation strategy is changed by constructing a numerical interferogram, as shown
in the upper halves of Figs. 7 and 8, to compare them with the corresponding experimental
ones, as shown in the lower halves of these figures, it is readily observed that agreement
between the numerical and the experimental interferogram is excellent. This indicates that
comparison of numerical and experimental results is easier when two results are displayed
based on the same principle. In such circumstances, we can reach a conclusion much more
easily and avoid misinterpretation.

Validation of unsteady-state flowfields is also demonstrated by this case. The interfero-
grams shown in Figs. 7 and 8 represent two successive stages of the shock wave propagation.
Good agreement between these two pairs of interferograms implies that the CFD validation
of the unsteady-state flows can be done without any problem provided that the experimental
facility can produce images of the flowfields with a high degree of repeatability.

Further validation can be explained with Figs. 7 and 8. From these figures, the devi-
ation of each fringe in the upper half (the numerical data) from the corresponding one
in the lower half can be determined so that the accuracy of the integrated density of
the numerical results can be estimated. For instance, the maximum shift in fringe posi-
tions observed in Fig. 8 is less than 10% of the interval between neighboring fringes.
Because one fringe shift indicates that the density change is 13.68% of the initial den-
sity in front of the transmitting shock wave, this maximum discrepancy means that the
difference in the integrated density is less than 1.4% of the initial density according to
fringe pattern analysis. This implies that the accuracy level reached could be as high as
that obtained by quantifying the experimental interferogram with Fourier transform fringe
analysis.

It is also necessary to point out that perturbations in the test section may make exper-
imental fringes move slightly forward or backward so that the experimental uncertainty
imposes more difficulties on estimating accuracy of numerical solutions. Moreover, the dif-
ficulty in timing numerical results to match exactly with experiments also results in fringe
shift between the numerical image and the experiment. Therefore, the level of validation
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achieved in the comparison described above is an acceptable way to show that the numerical
simulations represent the shock wave flow.

In addition, evaluation of the validation also depends on the purpose of the study. For ex-
ample, if the shock wave motion and shock wave interaction are emphasized in this case, the
agreement concluded from the comparison is excellent. However, if shock-wave/boundary-
layer interaction is to be investigated, it is obvious that this is not so, because the boundary
layer is not visible in the experimental results due to experimental limitations, and the
numerical solutions are only based on the Euler equations.

Quantification of the axisymmetric interferogram is possible by performing an inverse
transformation of the integrated image data to obtain the density information on the sym-
metric plane. However, the computational process may break down and the accuracy of
the numerical value may be compromised in the case of flowfields with many strong shock
waves. We therefore conclude that the validation for the axisymmetric case is more efficient
and easy to carry out as described above.

5. TRANSMITTING SHOCK WAVE DISCHARGED FROM A SQUARE TUBE:

A THREE-DIMENSIONAL CASE

For three-dimensional flowfields, the reconstruction of density from interferograms is the-
oretically possible with the use of tomographic techniques, which allows an unknown den-
sity distribution to be determined from line integrals of optical density through the distribu-
tion. However, in order to perform the inversion successfully, several tens of interferograms
in different viewing directions at the same time must be provided for complex flowfields [9,
10]. As imagined, tomographic inversion is immensely difficult in highly unsteady flows
because recording many flow images simultaneously is extremely difficult to achieve. In
comparison, creating computational interferograms from the three-dimensional density dis-
tribution is more feasible for CFD validation. In three-dimensional cases, the density integra-
tion expressed by Eq. (2) requires expensive image processing. In the following subsection,
an efficient algorithm for integrating the density is described. In addition, interferograms,
generated with the algorithm, will be compared with experiments to demonstrate the feasi-
bility of the three-dimensional CFD validation and the efficiency of the proposed algorithm.

5.1. An Efficient Algorithm for Three-Dimensional Density Integrations

A schematic for integrating the three-dimensional density with the previously used
method [20] is shown in Fig. 10, where the intervalxj ≤ xj+1 defines the intersection
of the light path with a computational cell. Tracing the light path as it passes through the
flowfield and integrating the appropriate function of the refractive index along this path are
computationally expensive even if the straight line approximation is used. In this process
it is necessary to determine the computational cell that the light intersects with, find the
intersected points on the computational cell, interpolate the density at these two points, and
calculate the integral for this segment and add it to the appropriate sum. The first three of
these operations are the most time consuming for the density integration. To overcome this
difficulty and make the three-dimensional post-processing more efficient, a fast algorithm
is proposed in this paper and described in detail in the following.

It is assumed that there is a known density of the flowfield, defined by [0, X] × [0,Y] ×
[0, Z] and divided into equal mesh sizes,1x,1y, and1x, in thex-, y-, andz-directions,
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FIG. 10. Schematic for three-dimensional density integration.

respectively. This is defined as the physical domain, as shown in Fig. 10. The angles of
the viewing direction with respect to three coordinate axes are denoted byα, β, andγ ,
respectively, as shown in Fig. 11. Of these angles,α is the smallest. Therefore, thex-
direction is chosen as the main viewing direction. The image plane is then created and
defined by [0,Yim]× [0, Zim], and also equally spaced with arbitrary grid sizes. For density
integration, an integrating domain(x′, y′, z′) is set up with its centroid located at point
(X/2,Y/2, Z/2) (see Fig. 11), and its length, width, and height are taken asL, W, andH ,
respectively.Yim=W andZim= H are kept between the image plane and the integrating
domain. These three parameters are estimated approximately by

FIG. 11. Schematic for coordinate transformation.
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
L = X cosα + Y sinβ + Z sinγ

W = X sinα + Y cosβ + Z sinγ

H = X sinα + Y sinβ + Z cosγ.

(10)

The size of the integrating domain is deliberately determined so that it still contains the
whole physical domain after this domain is rotated around its centroid at the angle(α, β, γ ).

The integrating domain is then rotated around its centroid in the angles of the viewing
direction(α, β, γ ) so that the grid lines in thex′-direction are parallel to the light ray. The
coordinates for the eight corners of the integrating domain are calculated by

x′i = r cos(αi + α)+ X/2,

y′i = r cos(βi + β)+ Y/2,

z′i = r cos(γi + γ )+ Z/2,

i = 1, . . . ,8 (11)

with 
r = [(xi − X/2)2+ (yi − Y/2)2+ (zi − Z/2)2]1/2

αi = arc cos[(xi − X/2)/r ]2

βi = arc cos[(yi − Y/2)/r ]2

γi = arc cos[(zi − Z/2)/r ]2.

(12)

Once the coordinates for these eight corner points are known the internal points of the
integrating domain can be calculated easily because only an equally spaced grid is required.
The process costs very little CPU time.

The next step is to interpolate the density at each point in the integrating domain from the
physical one. First, all grid points in the integrating domain are divided into two classes. If
the point,P(x′, y′, z′), is out of the physical domain the density at it is set to beρ0 so that
there will be no contribution from it to density integration by using Eq. (2). If this point
falls into the physical domain it is necessary to count its contribution. To do so, the cell
containing this point in the physical domain must be found. For the case described above it
is simply identified by calculating the index number of the lowest corner of the cell.

i = Int(x′/1x)

j = Int(y′/1y)

k = Int(z′/1z).

(13)

To simplify the density interpolation, a new local coordinate is set up with its origin at
P(x′i , y′j , z

′
k). The local coordinates for the point,P(x′, y′, z′), are expressed by

ξ = (x′ − x′i )/1x

η = (y′ − y′j )/1y

ζ = (z′ − z′k)/1z.

(14)

The density interpolation can be carried out as follows,

ρ(x′, y′, z′) = Ni, j,kρi, j,k + Ni+1, j,kρi+1, j,k + Ni, j+1,kρi, j+1,k

+ Ni+1, j+1,kρi+1, j+1,k + Ni, j,k+1ρi, j,k+1+ Ni+1, j,k+1ρi+1, j,k+1

+ Ni, j+1,k+1ρi, j+1,k+1+ Ni+1, j+1,k+1ρi+1, j+1,k+1 (15)
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with 

Ni, j,k = (1− ξ)(1− η)(1− ζ )
Ni+1, j,k = ξ(1− η)(1− ζ )
Ni, j+1,k = (1− ξ)η(1− ζ )
Ni+1, j+1,k = ξη(1− ζ )
Ni, j,k+1 = (1− ξ)(1− η)ζ
Ni+1, j,k+1 = ξ(1− η)ζ
Ni, j+1,k+1 = (1− ξ)ηζ
Ni+1, j+1,k+1 = ξηζ.

(16)

Once the interpolation is done, density integration starting from each point in the image
plane is simply expressed by a sum of density values at grid points along grid lines in the
x′-direction.

1φ(yj , zk) = 2π

λ
Kg1x′

NI∑
i=1

[ρ(x′i , y′j , z
′
k)− ρ0] for all ( j, k) ∈ ID, (17)

whereID stands for the image domain, andNI is the total number of grid points in the
x′-direction of the integrating domain with a mesh size of1x′. The interpolating process
is greatly simplified with these equations and the resulting computer code can be perfectly
vectorized because it is not necessary to judge whether a cell intersects with the light path
or not. As a result of the improvement, the newly developed code is about 20 times faster
that the one based on the conventional integrating algorithm [20].

5.2. Comparison of Numerical and Experimental Results

The third test case is shock wave diffraction, created by discharging a transmitting shock
wave from the open end of a square shock tube into ambient air for a shock Mach number
of 1.5. The shock wave at the open end is initially planar, but it quickly develops into a
spherical shape via a three-dimensional transition with time. The diffraction of the shock
wave was visualized from three viewing directions as defined in Fig. 12. The first viewing
direction is normal to the side walls and is named the side view. For comparison, the plane

FIG. 12. Geometry and viewing directions.
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crossing the middle of the side walls and normal to this view direction is called the mid-wall
symmetrical plane. The second view direction is along the diagonals that cross two corners
of the shock tube and is referred to as the corner view. The plane normal to this viewing
direction and crossing the diagonals is called the diagonal plane. The last one is along the
axis of symmetry and is defined as the axial view.

The three-dimensional hyperbolic system of the conservation laws for a perfect gas was
solved using a dispersion-controlled scheme [6] on an equally spaced grid with 200×150×
150 mesh points. Experiments were conducted in a 40×40 mm square cross-sectional tube
connected to a 60×150 mm diaphragmless shock tube in the Shock Wave Research Center,
Tohoku University, Japan [19]. The diffraction of the shock wave was visualized with double
exposure holographic interferometry. Both numerical and experimental results viewed in
three viewing directions are shown in Figs. 13 to 15, respectively. Figure 13 shows side
views of shock wave diffraction, Fig. 14 shows the corner views, and Fig. 15 shows the
axial view viewed from 15◦ degree off the axis of symmetry. The isopycnics on both the
mid-wall symmetric and the diagonal planes are also plotted in Fig. 16.

Carefully examining each pair of interferograms shown in Figs. 13 to 15, one sees that
agreement between the numerical and experimental results is good: the number of fringes
and their distributions coincide very well with each other. The only discrepancy between

FIG. 13. Side views of three-dimensional shock wave diffraction forMi = 1.5. (a) Experimental interferogram.
(b) Numerical interferogram.
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FIG. 14. Corner views of three-dimensional shock wave diffraction forMi = 1.5. (a) Experimental interfer-
ogram. (b) Numerical interferogram.

the numerical and experimental interferograms near the exit in Figs. 13b and 14b is due
to the fact that the resolution for displaying these numerical images is not fine enough to
distinguish as many fringes as are shown in the experimental interferograms in Figs. 13a and
14a, where density gradients are very high. Three pixels, at least, are necessary to visualize
one fringe: a dark pixel between two white pixels. If the space between two fringes is smaller
than one pixel, computed fringes will be displayed incorrectly. This problem can be avoided
when the numerical images are created with somewhat fewer fringes, as shown in Fig. 15.
Apart from this minor discrepancy, all the wave phenomena, such as the non-uniform flow
expansion created at corners and a secondary shock wave developed near the primary vortex
loop, appear to be identical when numerical results are compared with experimental ones.
From a comparison of these results obtained by viewing from three viewing directions, it
can be concluded that the numerical solutions are well validated.

It is obvious that for the validation of such a complex flowfield, a check on numerical
solutions with only a set of point measurements in the flowfield is not sufficient and a com-
parison between topological flow structures from both numerical and experimental results
must be included. Therefore, it may be concluded that good agreement on flow structures
implemented with a value check on a few measurement points will provide more acceptable
CFD validation.

Comparing Figs. 13 and 14 with 16 reveals some differences between interferometric
fringes and numerical isopycnics in both the mid-wall symmetrical and the diagonal plane.
Because the fringes in Figs. 13 and 14 represent the integrated density seen by the individual
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FIG. 15. Axial views of three-dimensional shock wave diffraction forMi = 1.5. (a) Experimental interfero-
gram. (b) Numerical interferogram.

light ray passing through a test section, many planes with different density distributions
overlap. This results in many fringes in the central area in the interferograms, as shown in
Figs. 13 and 14, but there are no density changes there, as shown in Fig. 16. Moreover, from
numerical isopycnics shown in Fig. 16b, the secondary shock wave is clearly observable but
is not easily identified from the interferograms shown in Fig. 14. According to the above
discussion, it is understood that, for three-dimensional flow visualization, some physical
features may appear to be smeared and some non-physical features may be created. There-
fore, the experimental data need to be carefully interpreted with reliable numerical results
that are capable of showing three-dimensional transient phenomena in detail.

As is well known, both computational fluid dynamics and experimental flow visual-
ization are important tools in the research of fluid science. Because the most interesting
problems are three-dimensional and contain transient phenomena, investigations into such
flowfields are very important. However, they can be very difficult to conduct. It may be
too much to ask experimental flow visualization to provide all the necessary information
for understanding these complex flowfields. However, the present study shows that it may
be possible to circumvent this difficulty through interferometry provided that the interfero-
grams are clear enough to validate numerical solutions. In other words, experimental images
of three-dimensional flowfield need only provide validation of numerical solutions. The
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FIG. 16. Isopycnics in two planes of three-dimensional shock wave diffraction forMi = 1.5. (a) The mid-wall
symmetric plane. (b) The diagonal plane.

numerical results thus validated, in return, provide some useful information for interpreting
complex interferometric patterns. As a result, such a CFD validation works as a tool that
combines the CFD and experiments for exploration of the physics that can be done well by
neither CFD nor experiments alone.

Finally, in the absence of efficient tomographic reconstruction of the density for three-
dimensional complex flows, this direct comparison is a more attractive strategy for whole
flowfield validation at an acceptable level of accuracy.

6. CONCLUSIONS

Computational simulation of optical flow visualization can create a direct comparison
between numerical and experimental results, and is proven to be a promising way to ap-
proach reliable validation of numerical solutions, especially for three-dimensional com-
plex flowfields where quantification of experimental interferograms is almost impossible.
This comparison with quantitative characters is an effective approach to whole flowfield
validation without any loss of accuracy in either experimental data or numerical results.
The proposed algorithm for integrating three-dimensional density works much faster and
could make this post-processing technique more widely available. However, in order to
achieve reliable validation, the flowfield of interest must be represented correctly by the
solved equations, visualized clearly by interferometry, and displayed correctly by com-
puter facilities. In addition, fringe patterns of experimental results in axisymmetric and
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three-dimensional flowfields need to be carefully interpreted, taking into account density-
integrated effects.
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